Localisation of mRNA for collagenase in osteocytic, bone surface and chondrocytic cells but not osteoclasts.

نویسندگان

  • K Fuller
  • T J Chambers
چکیده

Osteoclasts resorb the extracellular matrix of bone by secreting protons and enzymes into a circumpherentially sealed compartment between the osteoclast and the bone surface. Although the lysosomal cysteine proteinases play a major role in matrix degradation by osteoclasts, collagenase (matrix metalloproteinase-1, EC 3.4.24.7) is also required for osteoclastic bone resorption, and may be directly involved in collagen degradation in the hemivacuole. We assessed the effects of inhibitors of cysteine proteinases and collagenase on bone resorption by osteoclasts isolated from rodent bone. We found that while inhibition of cysteine proteinases strongly suppressed osteoclastic resorption, inhibitors of collagenase were without effect on the number, size, or demineralised fringe of excavations. We could find no evidence of expression of mRNA for collagenase in rat osteoclasts by in situ hybridisation, but found that it was expressed by chondrocytes, bone surface cells and osteocytes adjacent to osteoclasts. The distribution of these cells, and the correlation between increased collagenase production and increased stimulation of osteoclastic resorption in vitro by bone cells, suggests that these cells might be involved in the regulation of bone resorption in situ, and that collagenase production might play a role in this process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cell Purification from the Articular Cartilage Cell Culture

Objective Articular cartilage as an avascular skeletal tissue possesses limited capacity to heal. On the other hand, it is believed that the regeneration capacity of each tissue is largely related to its stem cell contents. Little is known about the presence of mesenchymal stem cells in articular cartilage tissue. This subject is investigated in the present study. Materials and Methods Artic...

متن کامل

(Pro)collagenase (matrix metalloproteinase-1) is present in rodent osteoclasts and in the underlying bone-resorbing compartment.

Osteoclasts resorb the extracellular matrix of bone by secreting enzymes and acid into a sealed-off compartment that they form upon attachment to the bone surface. Although the lysosomal cysteine proteinases can degrade collagen after the demineralization of bone at low pH, several lines of evidence suggest that collagenase (matrix metalloproteinase-1, EC 3.4.24.7) may also be involved in this ...

متن کامل

A Study on Transdifferentiation of Bone Marrow Stromal Cells into Neuronal and Glial-Like Cells In Vitro by Different Inducers

Introduction: There are some evidences to suggest that bone marrow stromal cells (BMSCs) not only differentiate into mesodermal cells, but also adopt the fate of endodermal and ectodermal cell types. BMSCs can be a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system. Bone marrow stromal cells can be expanded rapidly in vitro and can...

متن کامل

Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice.

Parathyroid hormone (PTH) stimulates bone resorption by acting directly on osteoblasts/stromal cells and then indirectly to increase differentiation and function of osteoclasts. PTH acting on osteoblasts/stromal cells increases collagenase gene transcription and synthesis. To assess the role of collagenase in the bone resorptive actions of PTH, we used mice homozygous (r/r) for a targeted mutat...

متن کامل

Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact.

The cell-free endocranial surface of young adult rat parietal bones was used as a substrate for osteoclastic bone resorption, either without prior treatment, or after incubation of the parietal bones with collagenase or neonatal rat calvarial cells. Untreated, the endocranial surface consisted of unmineralized organic fibres; incubation with calvarial cells or collagenase caused disruption and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 108 ( Pt 6)  شماره 

صفحات  -

تاریخ انتشار 1995